Kategorien
Algebra Galoistheorie Körpertheorie Mathematik

Jede Körpererweiterung vom Grad 2 ist normal

Behauptung Jede Körpererweiterung L:K vom Grad 2 ist normal. Beweis Wir zeigen Sei $$\alpha\in L\setminus K.$$ hat mindestens Grad 2 über K, das heißt das Minimalpolynom $$m_{\alpha,K}$$ hat mindestens den Grad 2. Nach Voraussetzung hat $$m_{\alpha,K}$$ höchtens den Grad 2. Daher ist $$L = K(\alpha)$$ Sei $$\beta$$ die zweite Nullstelle von $$m_{\alpha,K}$$ $$-(\alpha + \beta)$$ […]

Kategorien
Algebra Galoistheorie Mathematik

Every field extension of degree 2 is normal

Assertion Every field extension L:K of degree 2 is normal. Proof We show Let $$\alpha\in L\setminus K.$$ has at least degree 2 over K, that means the minimal polynomial $$m_{\alpha,K}$$ has at least degree 2. By assumption $$m_{\alpha,K}$$ has at most degree 2. Therefore is $$L = K(\alpha)$$ Let $$\beta$$ be the second root of […]

Kategorien
Algebra Mathematik Ringtheorie

In a boolean ring every prime ideal is a maximal ideal

Assertion In a boolean ring every prime ideal is a maximal ideal.(A boolean ring is a ring for which x² = x for all x in R, that is, R consists only of idempotent elements.) Proof Let P be a a prime ideal in a boolean ring R with 1.Then is L = R/P a […]

Kategorien
Algebra Galoistheorie Mathematik

A field extension of degree 2, that is not Galois

A field extension is Galois, if it’s normal and separable. Every field extension of degree 2 is normal. Proof We need to find a field extension of degree 2 that is not separable. is not separable, because the minimal polynomial $$y^2+x^2$$ of $$x$$ over $$\mathbb{Z}_2 (x^2)$$ has in $$\mathbb{Z}_2 (x)$$ the double zero $$x$$ because […]

Kategorien
Algebra Galoistheorie Mathematik

Eine Körpererweiterung vom Grad 2, die nicht galoissch ist

Eine Körpererweiterung heißt galoissch, wenn sie normal und separabel ist. Jede Körpererweiterung vom Grad 2 ist normal. Beweis Es gilt, eine nicht separable Körpererweiterung vom Grad 2 zu finden. ist nicht separabel, denn das Minimalpolynom $$y^2+x^2$$ von $$x$$ über $$\mathbb{Z}_2 (x^2)$$ hat in $$\mathbb{Z}_2 (x)$$ die doppelte Nullstelle $$x$$ wegen $$y^2+x^2=(y+x)^2$$

Kategorien
Algebra Mathematik

In a finite ring each element is either zero divisor or unit

Assertion In a finite ring R, each element is either a zero divisor or a unit (i.e. it has an inverse). Proof If a is a zero divisor then we are done. Let a be no zero divisor. Since R is finite, the set $$\{a^n~|~n \in \mathbb{N}\}$$ is finite. There is $$m,~n \in \mathbb{N}$$ with […]

Kategorien
Algebra Körpertheorie Mathematik

Q(i) and Q(√2) are isomorphic vector spaces, but not isomorphic fields

Assertion ℚ(i) and ℚ(√2) are isomorphic ℚ vector spaces. Proof i has the minimal polynomial X2 + 1 and √2 has the minimal polynomial X2 – 2. Both have the degree 2, so the elements are algebraic via ℚ. Thus ℚ(i) and ℚ(√2) are ℚ vector spaces of the same dimension 2 and thus isomorphic. […]

Kategorien
Algebra Körpertheorie Mathematik

Q(i) und Q(√2) sind isomorph als Vektorräume, aber nicht als Körper

Behauptung: ℚ(i) und ℚ(√2) sind isomorphe ℚ-Vektorräume. Beweis: i hat das Minimalpolynom X2 + 1 und √2 hat das Minimalpolynom X2 – 2. Beide haben den Grad 2, die Elemente sind also algebraisch über ℚ. ℚ(i) und ℚ(√2) sind also ℚ-Vektorräume der gleichen Dimension 2 und damit isomorph. Behauptung: ℚ(i) und ℚ(√2) sind als Körper […]

Kategorien
Algebra Körpertheorie Mathematik

Jeder endliche Integritätsbereich ist ein Körper

Beweis: Ein Integritätsbereich I ist ein vom Nullring verschiedener nullteilerfreier kommutativer Ring mit einem Einselement. Wir müssen also zeigen, dass jedes Element ≠ 0 ein multiplikatives Inverses hat. Sei a ∈ I und a ≠ 0. Wir betrachten eine Abbildung: Es gilt: ax = ay ⇔ a(x-y) = 0 Weil I nullteilerfrei ist und a […]

Kategorien
Algebra Körpertheorie Mathematik

Nullstellen und Vielfachheiten des Polynoms x^5 – x

Berechne alle Nullstellen und deren Vielfachheiten von über . Lösung: Eine Nullstelle ist offensichtlich , d.h. es gilt: Wendet man auf $$X^4-1$$ zweimal die dritte binomische Formel an erhält man:$$(X^4-1) = (X^2-1)(X^2+1) = (X-1)(X+1)(X^2+1)$$ Aus der Gleichung $$X^5-X = X(X-1)(X+1)(X^2+1)$$ kann man nun von links nach rechts 5 Nullstellen ablesen:$$\lambda_1 = 0$$$$\lambda_2 = 1$$$$\lambda_3 = […]