Assertion The power set P(M) of a set M with n elements contains 2n elements. Proof base case: n = 0 The set which contains 0 elements is the empty set . Its power set contains 1 element (1 = 20), namely the empty set: . Iinductive step: A(n) => A(n+1) Let be a set […]
Schlagwort: Beweis
Eine Körpererweiterung heißt galoissch, wenn sie normal und separabel ist. Jede Körpererweiterung vom Grad 2 ist normal. Beweis Es gilt, eine nicht separable Körpererweiterung vom Grad 2 zu finden. ist nicht separabel, denn das Minimalpolynom $$y^2+x^2$$ von $$x$$ über $$\mathbb{Z}_2 (x^2)$$ hat in $$\mathbb{Z}_2 (x)$$ die doppelte Nullstelle $$x$$ wegen $$y^2+x^2=(y+x)^2$$
Behauptung: ℚ(i) und ℚ(√2) sind isomorphe ℚ-Vektorräume. Beweis: i hat das Minimalpolynom X2 + 1 und √2 hat das Minimalpolynom X2 – 2. Beide haben den Grad 2, die Elemente sind also algebraisch über ℚ. ℚ(i) und ℚ(√2) sind also ℚ-Vektorräume der gleichen Dimension 2 und damit isomorph. Behauptung: ℚ(i) und ℚ(√2) sind als Körper […]
Beweis: Ein Integritätsbereich I ist ein vom Nullring verschiedener nullteilerfreier kommutativer Ring mit einem Einselement. Wir müssen also zeigen, dass jedes Element ≠ 0 ein multiplikatives Inverses hat. Sei a ∈ I und a ≠ 0. Wir betrachten eine Abbildung: Es gilt: ax = ay ⇔ a(x-y) = 0 Weil I nullteilerfrei ist und a […]
Behauptung: Eine unendliche Körpererweiterung L:K hat unendlich viele Zwischenkörper. Beweis: 1. Fall:Es gibt ein , dass transzendent über K ist.Dann hat schon unendlich viele Zwischenkörper. 2.Fall:L:K ist algebraisch. Sei B eine Basis von L:K. B ist unendlich, da L:K unendlich ist. B hat eine abzählbar unendliche Teilmenge (Die sind also aus L\K.) Die Körpererweiterung K(A):K […]
Behauptung: In einem booleschen Ring mit Eins ist jedes Primideal maximal.(Ein boolescher Ring ist ein Ring, in dem jedes Element x idempotent ist, d.h. x² = x.) Beweis: Sei P ein Primideal in einem booleschen Ring R mit Eins.Dann ist L = R/P ein boolescher Ring ohne Nullteiler.L kann nicht mehr als zwei Elemente haben:Seien […]
Behauptung: Das Polynom x³ + x² + x + 2 ist irreduzibel über dem Ring der ganzen Zahlen. Beweis: Beweis durch Widerspruch:Angenommen das Polynom f = x³ + x² + x + 2 ∈ Z[x] wäre reduzibel.Dann gäbe es normierte Polynome g, h ∈ Z[x] mit gh = f.Dann hat entweder g oder h den […]
Behauptung: Jeder unitäre Ring R kann in den Endomorphismenring einer endlichen abelschen Gruppen eingebettet werden. Beweis: Wie benutzen, dass jeder Ring selbst eine Gruppe ist.Dann betrachten wir die Abbildung: Ein Ringelement r wird abgebildet auf eine Abbildung, und zwar auf die Abbildung, die jedes Element x mit r multipliziert. Es gilt: $$\varphi_r (x+y) = r(x+y) […]
Wir beweisen, dass ein kommutativer Ring mit 1, der Nullteiler besitzt, keine Körper sein kann. Umgekehrt ist solch ein Ring ohne Nullteiler bereits ein Körper. Behauptung: Sei R ein kommutativer Ring mit 1 ≠ 0. Dann gilt:i) Ein Nullteiler ist nie eine Einheit, d.h. ein Ring mit Nullteilern ist kein Körper.ii) (R*,·) ist eine Gruppe.(Menge […]
Behauptung: In einem endlichen Ring R ist jedes Element entweder ein Nullteiler oder eine Einheit (d.h. es besitzt ein Inverses). Beweis: Wenn a Nullteiler ist sind wir fertig. Sei a kein Nullteiler. Da R endlich ist, ist die Menge $$\{a^n~|~n \in \mathbb{N}\}$$ endlich. Daher gibt es $$m,~n \in \mathbb{N}$$ mit m < n und $$a^m […]