Berechne alle Nullstellen und deren Vielfachheiten von in den Ringen . Lösung 1) $$X^3 – 2 = 0 \quad \Leftrightarrow \quad X^3 = 2$$ hat keine Lösung über ℚ. 2) $$X^3 – 2 = 0 \quad \Rightarrow \quad \lambda_1 = \sqrt[3]{2}$$ ist eine Lösung. Es gibt ein Polynom $$f \in \mathbb{R}[X]$$ mit $$X^3-2 = (X-\sqrt[3]{2}) […]
Kategorie: Algebra
Behauptung: Eine unendliche Körpererweiterung L:K hat unendlich viele Zwischenkörper. Beweis: 1. Fall:Es gibt ein , dass transzendent über K ist.Dann hat schon unendlich viele Zwischenkörper. 2.Fall:L:K ist algebraisch. Sei B eine Basis von L:K. B ist unendlich, da L:K unendlich ist. B hat eine abzählbar unendliche Teilmenge (Die sind also aus L\K.) Die Körpererweiterung K(A):K […]
Behauptung: In einem booleschen Ring mit Eins ist jedes Primideal maximal.(Ein boolescher Ring ist ein Ring, in dem jedes Element x idempotent ist, d.h. x² = x.) Beweis: Sei P ein Primideal in einem booleschen Ring R mit Eins.Dann ist L = R/P ein boolescher Ring ohne Nullteiler.L kann nicht mehr als zwei Elemente haben:Seien […]
Behauptung: Das Polynom x³ + x² + x + 2 ist irreduzibel über dem Ring der ganzen Zahlen. Beweis: Beweis durch Widerspruch:Angenommen das Polynom f = x³ + x² + x + 2 ∈ Z[x] wäre reduzibel.Dann gäbe es normierte Polynome g, h ∈ Z[x] mit gh = f.Dann hat entweder g oder h den […]
Behauptung: Jeder unitäre Ring R kann in den Endomorphismenring einer endlichen abelschen Gruppen eingebettet werden. Beweis: Wie benutzen, dass jeder Ring selbst eine Gruppe ist.Dann betrachten wir die Abbildung: Ein Ringelement r wird abgebildet auf eine Abbildung, und zwar auf die Abbildung, die jedes Element x mit r multipliziert. Es gilt: $$\varphi_r (x+y) = r(x+y) […]
Behauptung: In einem endlichen Ring R ist jedes Element entweder ein Nullteiler oder eine Einheit (d.h. es besitzt ein Inverses). Beweis: Wenn a Nullteiler ist sind wir fertig. Sei a kein Nullteiler. Da R endlich ist, ist die Menge $$\{a^n~|~n \in \mathbb{N}\}$$ endlich. Daher gibt es $$m,~n \in \mathbb{N}$$ mit m < n und $$a^m […]
Wir beweisen, dass es genau eine Gruppe der Ordnung 15 gibt. Dies gelingt uns mit Hilfe des dritten Satzes von Sylow und dem Chinesischen Restsatz. Beweis: Sei G eine Gruppe der Ordnung 15 = 3*5. Jede 3-Sylow-Untergruppe hat die Ordnung 3 und ist isomorph zu ℤ3.Jede 5-Sylow-Untergruppe hat die Ordnung 5 und ist isomorph zu […]
Das direkte Produkt einer Gruppe
Wir zeigen, dass das direkte Produkt einer Gruppe mit einer bestimmten, hier definierten Verknüpfung, wieder eine Gruppe ist. Aufgabe Sei eine Gruppe.Auf der Menge $$G\times G$$ wird eine neue Verknüpfung $$*$$ erklärt mit $$(a,b)*(a‘,b‘) = (a\cdot a‘,b\cdot b‘)$$Weise nach, dass $$(G\times G,*)$$ eine Gruppe ist. Lösung Um zu sehen, dass $$(G\times G,*)$$ eine Gruppe ist, […]
Wir beweisen, dass jede endliche p-Gruppe auflösbar ist. Das heißt, sie hat eine Subnormalreihe mit abelschen Faktorgruppen. Eine Faktorgruppe ist genau dann abelsch, wenn der zugehörige Normalteiler die Kommutatorgruppe umfasst. Behauptung Sei p eine Primzahl. Dann ist jede endliche p-Gruppe auflösbar. Beweis Sei eine Gruppe der Ordnung $$p^k,~k>1$$ Dann gibt es eine Kette $$U_k \triangleright […]
Wir beweisen die Existenz von Normalteilern in Gruppen einer bestimmten Ordnung. Behauptung Sei p eine Primzahl und G eine endliche Gruppe der Ordnung .Dann besitzt G einen Normalteiler der Ordnung pr-1. Beweis Wir beweisen diese Behauptung durch eine vollständige Induktion nach r. Induktionsanfang: r=1 $$\{e\}\triangleleft G$$ ist ein Normalteiler der Ordnung 1. Induktionsschritt: A(r-1) => […]