Aufgabe: | Lösung: $$1+x(t)^2$$ also die Steigung der gesuchten Funktion, ist überall ungleich 0. Es gibt also keine stationäre Lösung.Desweiteren ist $$1+x(t)^2$$ auf ganz $$\mathbb{R}^2$$ stetig und lokal Lipschitz bezüglich $$x$$ daher ist dieses Anfangswertproblem eindeutig lösbar. $$\begin{align}\frac{dx}{dt} &= 1+x^2\\ \frac{dx}{1+x^2} &= 1 \text{ } dt\\ \int \frac{dx}{1+x^2} &= \int 1 \text{ } dt\\ \arctan […]
Autor: Tibo
Aufgabe: Löse das Anfangswertproblem: Lösung: Zuerst löst man die homogene Gleichung durch Trennung der Variablen: $$\begin{align*}y’&=-\frac{y}{x}\\ \frac{dy}{dx}&=-\frac{y}{x}\\ \frac{1}{y}dy&=-\frac{1}{x}dx\\ \int\frac{1}{y}dy&=-\int\frac{1}{x}dx\\ \ln(|y|)&=-\ln(|x|)+k_0 \quad\quad k_0\in\mathbb{R}\\ y&=\exp(-ln(|x|)+k_0)\\ y&=\exp(-ln(|x|))\cdot \exp(k_0)\\ y_h&=\frac{1}{x} \cdot k \quad\quad k\in\mathbb{R}\end{align*}$$ Bemerkung zum Betrag:Die Lösungen einer homogenen linearen Differentialgleichung ist entweder die Nulllösung oder stets von Null verschieden, also in jedem Intervall nur positiv oder nur […]
Behauptung: ℚ(i) und ℚ(√2) sind isomorphe ℚ-Vektorräume. Beweis: i hat das Minimalpolynom X2 + 1 und √2 hat das Minimalpolynom X2 – 2. Beide haben den Grad 2, die Elemente sind also algebraisch über ℚ. ℚ(i) und ℚ(√2) sind also ℚ-Vektorräume der gleichen Dimension 2 und damit isomorph. Behauptung: ℚ(i) und ℚ(√2) sind als Körper […]
Beweis: Ein Integritätsbereich I ist ein vom Nullring verschiedener nullteilerfreier kommutativer Ring mit einem Einselement. Wir müssen also zeigen, dass jedes Element ≠ 0 ein multiplikatives Inverses hat. Sei a ∈ I und a ≠ 0. Wir betrachten eine Abbildung: Es gilt: ax = ay ⇔ a(x-y) = 0 Weil I nullteilerfrei ist und a […]
Berechne alle Nullstellen und deren Vielfachheiten von über . Lösung: Eine Nullstelle ist offensichtlich , d.h. es gilt: Wendet man auf $$X^4-1$$ zweimal die dritte binomische Formel an erhält man:$$(X^4-1) = (X^2-1)(X^2+1) = (X-1)(X+1)(X^2+1)$$ Aus der Gleichung $$X^5-X = X(X-1)(X+1)(X^2+1)$$ kann man nun von links nach rechts 5 Nullstellen ablesen:$$\lambda_1 = 0$$$$\lambda_2 = 1$$$$\lambda_3 = […]
Berechne alle Nullstellen und deren Vielfachheiten von in den Ringen . Lösung 1) $$X^3 – 2 = 0 \quad \Leftrightarrow \quad X^3 = 2$$ hat keine Lösung über ℚ. 2) $$X^3 – 2 = 0 \quad \Rightarrow \quad \lambda_1 = \sqrt[3]{2}$$ ist eine Lösung. Es gibt ein Polynom $$f \in \mathbb{R}[X]$$ mit $$X^3-2 = (X-\sqrt[3]{2}) […]
Behauptung: Eine unendliche Körpererweiterung L:K hat unendlich viele Zwischenkörper. Beweis: 1. Fall:Es gibt ein , dass transzendent über K ist.Dann hat schon unendlich viele Zwischenkörper. 2.Fall:L:K ist algebraisch. Sei B eine Basis von L:K. B ist unendlich, da L:K unendlich ist. B hat eine abzählbar unendliche Teilmenge (Die sind also aus L\K.) Die Körpererweiterung K(A):K […]
Behauptung: In einem booleschen Ring mit Eins ist jedes Primideal maximal.(Ein boolescher Ring ist ein Ring, in dem jedes Element x idempotent ist, d.h. x² = x.) Beweis: Sei P ein Primideal in einem booleschen Ring R mit Eins.Dann ist L = R/P ein boolescher Ring ohne Nullteiler.L kann nicht mehr als zwei Elemente haben:Seien […]
Behauptung: Das Polynom x³ + x² + x + 2 ist irreduzibel über dem Ring der ganzen Zahlen. Beweis: Beweis durch Widerspruch:Angenommen das Polynom f = x³ + x² + x + 2 ∈ Z[x] wäre reduzibel.Dann gäbe es normierte Polynome g, h ∈ Z[x] mit gh = f.Dann hat entweder g oder h den […]
Behauptung: Jeder unitäre Ring R kann in den Endomorphismenring einer endlichen abelschen Gruppen eingebettet werden. Beweis: Wie benutzen, dass jeder Ring selbst eine Gruppe ist.Dann betrachten wir die Abbildung: Ein Ringelement r wird abgebildet auf eine Abbildung, und zwar auf die Abbildung, die jedes Element x mit r multipliziert. Es gilt: $$\varphi_r (x+y) = r(x+y) […]