Kategorien
Algebra Körpertheorie Mathematik

Nullstellen und Vielfachheiten des Polynoms x^3 – 2

Berechne alle Nullstellen und deren Vielfachheiten von in den Ringen . Lösung 1) $$X^3 – 2 = 0 \quad \Leftrightarrow \quad X^3 = 2$$ hat keine Lösung über ℚ. 2) $$X^3 – 2 = 0 \quad \Rightarrow \quad \lambda_1 = \sqrt[3]{2}$$ ist eine Lösung. Es gibt ein Polynom $$f \in \mathbb{R}[X]$$ mit $$X^3-2 = (X-\sqrt[3]{2}) […]

Kategorien
Algebra Körpertheorie Mathematik

Eine unendliche Körpererweiterung hat unendlich vielen Zwischenkörper

Behauptung: Eine unendliche Körpererweiterung L:K hat unendlich viele Zwischenkörper. Beweis: 1. Fall:Es gibt ein , dass transzendent über K ist.Dann hat schon unendlich viele Zwischenkörper. 2.Fall:L:K ist algebraisch. Sei B eine Basis von L:K. B ist unendlich, da L:K unendlich ist. B hat eine abzählbar unendliche Teilmenge (Die sind also aus L\K.) Die Körpererweiterung K(A):K […]

Kategorien
Algebra Mathematik Ringtheorie

In einem booleschen Ring ist jedes Primideal maximal

Behauptung: In einem booleschen Ring mit Eins ist jedes Primideal maximal.(Ein boolescher Ring ist ein Ring, in dem jedes Element x idempotent ist, d.h. x² = x.) Beweis: Sei P ein Primideal in einem booleschen Ring R mit Eins.Dann ist L = R/P ein boolescher Ring ohne Nullteiler.L kann nicht mehr als zwei Elemente haben:Seien […]

Kategorien
Algebra Mathematik Ringtheorie

Ein Polynom dritten Grades ist irreduzibel über den ganzen Zahlen

Behauptung: Das Polynom x³ + x² + x + 2 ist irreduzibel über dem Ring der ganzen Zahlen. Beweis: Beweis durch Widerspruch:Angenommen das Polynom f = x³ + x² + x + 2 ∈ Z[x] wäre reduzibel.Dann gäbe es normierte Polynome g, h ∈ Z[x] mit gh = f.Dann hat entweder g oder h den […]

Kategorien
Algebra Mathematik Ringtheorie

Jeder unitäre Ring kann in den Endomorphismenring einer endlichen abelschen Gruppen eingebettet werden

Behauptung: Jeder unitäre Ring R kann in den Endomorphismenring einer endlichen abelschen Gruppen eingebettet werden. Beweis: Wie benutzen, dass jeder Ring selbst eine Gruppe ist.Dann betrachten wir die Abbildung: Ein Ringelement r wird abgebildet auf eine Abbildung, und zwar auf die Abbildung, die jedes Element x mit r multipliziert. Es gilt: $$\varphi_r (x+y) = r(x+y) […]

Kategorien
Algebra Mathematik Ringtheorie

In einem endlichen Ring ist jedes Element entweder Nullteiler oder Einheit

Behauptung: In einem endlichen Ring R ist jedes Element entweder ein Nullteiler oder eine Einheit (d.h. es besitzt ein Inverses). Beweis: Wenn a Nullteiler ist sind wir fertig. Sei a kein Nullteiler. Da R endlich ist, ist die Menge $$\{a^n~|~n \in \mathbb{N}\}$$ endlich. Daher gibt es $$m,~n \in \mathbb{N}$$ mit m < n und $$a^m […]

Kategorien
Algebra Mathematik

Es gibt genau eine Gruppe der Ordnung 15 (Sylow)

Wir beweisen, dass es genau eine Gruppe der Ordnung 15 gibt. Dies gelingt uns mit Hilfe des dritten Satzes von Sylow und dem Chinesischen Restsatz. Beweis: Sei G eine Gruppe der Ordnung 15 = 3*5. Jede 3-Sylow-Untergruppe hat die Ordnung 3 und ist isomorph zu ℤ3.Jede 5-Sylow-Untergruppe hat die Ordnung 5 und ist isomorph zu […]

Kategorien
Algebra Mathematik

Das direkte Produkt einer Gruppe

Wir zeigen, dass das direkte Produkt einer Gruppe mit einer bestimmten, hier definierten Verknüpfung, wieder eine Gruppe ist. Aufgabe Sei eine Gruppe.Auf der Menge $$G\times G$$ wird eine neue Verknüpfung $$*$$ erklärt mit $$(a,b)*(a‘,b‘) = (a\cdot a‘,b\cdot b‘)$$Weise nach, dass $$(G\times G,*)$$ eine Gruppe ist. Lösung Um zu sehen, dass $$(G\times G,*)$$ eine Gruppe ist, […]

Kategorien
Algebra Mathematik

Jede endliche p-Gruppe ist auflösbar

Wir beweisen, dass jede endliche p-Gruppe auflösbar ist. Das heißt, sie hat eine Subnormalreihe mit abelschen Faktorgruppen. Eine Faktorgruppe ist genau dann abelsch, wenn der zugehörige Normalteiler die Kommutatorgruppe umfasst. Behauptung Sei p eine Primzahl. Dann ist jede endliche p-Gruppe auflösbar. Beweis Sei eine Gruppe der Ordnung $$p^k,~k>1$$ Dann gibt es eine Kette $$U_k \triangleright […]

Kategorien
Algebra Mathematik Vollständige Induktion

Existenz von Normalteilern in p-Gruppen

Wir beweisen die Existenz von Normalteilern in Gruppen einer bestimmten Ordnung. Behauptung Sei p eine Primzahl und G eine endliche Gruppe der Ordnung .Dann besitzt G einen Normalteiler der Ordnung pr-1. Beweis Wir beweisen diese Behauptung durch eine vollständige Induktion nach r. Induktionsanfang: r=1 $$\{e\}\triangleleft G$$ ist ein Normalteiler der Ordnung 1. Induktionsschritt: A(r-1) => […]