Behauptung Sei L/K eine Körpererweiterung, a ∈ L mit [K(a) : K] ungerade.Dann folgt: K(a) = K(a2). Für [K(a) : K] gerade stimmt die Aussage nicht. Beweis 1.Teil L ist ein Köper, deshalb gilt: a ∈ L ⇒ a2 ∈ L Auch gilt: a2 ∈ K(a) Somit haben wir die Kette: K ⊆ K(a2) ⊆ […]
Kategorie: Mathematik
Der kleine Satz von Fermat
Oder der kleine Fermat, wie er auch genannt wird. Wir zeigen den vollständigen Beweis des Satzes. Anschließend folgt noch ein anschauliches Rechenbeispiel. Behauptung: Sei eine Primzahl und eine natürliche Zahl mit . Dann gilt: . Beweis: Mit Vollständiger Induktion lässt sich zeigen: . Siehe: p teilt (n^p – n). Es ist: . (Wir haben einfach […]
p teilt (n^p – n)
Behauptung Sei eine beliebige Primzahl. Dann gilt: für alle Dieser Beweis ist Grundlage für den kleinen Satz von Fermat. Beweis Induktionsanfang: n = 1 Für jede Primzahl gilt: Induktionsschritt: n => n+1 Angenommen, die Aussage ist richtig für alle natürlichen Zahlen bis n. Dann folgt daraus, dass die Aussage auch richtig ist für n+1: Der […]