Kategorien
Algebra Mathematik

Körpererweiterung und Gradsatz

Behauptung Sei L/K eine Körpererweiterung, a ∈ L mit [K(a) : K] ungerade.Dann folgt: K(a) = K(a2). Für [K(a) : K] gerade stimmt die Aussage nicht. Beweis 1.Teil L ist ein Köper, deshalb gilt: a ∈ L ⇒ a2 ∈ L Auch gilt: a2 ∈ K(a) Somit haben wir die Kette: K ⊆ K(a2) ⊆ […]