Oder der kleine Fermat, wie er auch genannt wird. Wir zeigen den vollständigen Beweis des Satzes. Anschließend folgt noch ein anschauliches Rechenbeispiel. Behauptung: Sei eine Primzahl und eine natürliche Zahl mit . Dann gilt: . Beweis: Mit Vollständiger Induktion lässt sich zeigen: . Siehe: p teilt (n^p – n). Es ist: . (Wir haben einfach […]
Schlagwort: Zahlentheorie
p teilt (n^p – n)
Behauptung Sei eine beliebige Primzahl. Dann gilt: für alle Dieser Beweis ist Grundlage für den kleinen Satz von Fermat. Beweis Induktionsanfang: n = 1 Für jede Primzahl gilt: Induktionsschritt: n => n+1 Angenommen, die Aussage ist richtig für alle natürlichen Zahlen bis n. Dann folgt daraus, dass die Aussage auch richtig ist für n+1: Der […]