Aufgabe: Löse das Anfangswertproblem: Lösung: Zuerst löst man die homogene Gleichung durch Trennung der Variablen: $$\begin{align*}y’&=-\frac{y}{x}\\ \frac{dy}{dx}&=-\frac{y}{x}\\ \frac{1}{y}dy&=-\frac{1}{x}dx\\ \int\frac{1}{y}dy&=-\int\frac{1}{x}dx\\ \ln(|y|)&=-\ln(|x|)+k_0 \quad\quad k_0\in\mathbb{R}\\ y&=\exp(-ln(|x|)+k_0)\\ y&=\exp(-ln(|x|))\cdot \exp(k_0)\\ y_h&=\frac{1}{x} \cdot k \quad\quad k\in\mathbb{R}\end{align*}$$ Bemerkung zum Betrag:Die Lösungen einer homogenen linearen Differentialgleichung ist entweder die Nulllösung oder stets von Null verschieden, also in jedem Intervall nur positiv oder nur […]
Schlagwort: Variation der Konstanten
Musterlösung einer Differentialgleichung Aufgabe | Lösung Die Variation der Konstanten ist ein Verfahren um inhomogene lineare Differentialgleichungen zu lösen. Bevor man die inhomogene Gleichung lösen kann, muss man erst einmal die homogenen Gleichung lösen. Die kann man durch Trennung der Variablen tun oder, wenn man etwas Erfahrung hat, durch scharfes hinsehen: Um die inhomogene Gleichung […]