Kategorien
Gewöhnliche Differentialgleichungen Mathematik

Variation der Konstanten: Anfangswertproblem

Aufgabe: Löse das Anfangswertproblem: Lösung: Zuerst löst man die homogene Gleichung durch Trennung der Variablen: $$\begin{align*}y’&=-\frac{y}{x}\\ \frac{dy}{dx}&=-\frac{y}{x}\\ \frac{1}{y}dy&=-\frac{1}{x}dx\\ \int\frac{1}{y}dy&=-\int\frac{1}{x}dx\\ \ln(|y|)&=-\ln(|x|)+k_0 \quad\quad k_0\in\mathbb{R}\\ y&=\exp(-ln(|x|)+k_0)\\ y&=\exp(-ln(|x|))\cdot \exp(k_0)\\ y_h&=\frac{1}{x} \cdot k \quad\quad k\in\mathbb{R}\end{align*}$$ Bemerkung zum Betrag:Die Lösungen einer homogenen linearen Differentialgleichung ist entweder die Nulllösung oder stets von Null verschieden, also in jedem Intervall nur positiv oder nur […]